首页 | 本学科首页   官方微博 | 高级检索  
     


The modulation of membrane fluidity by hydrogenation processes. II. Homogeneous catalysis and model biomembranes
Authors:C Vigo  F M Goni  P J Quinn  D Chapman
Abstract:A homogeneous catalyst, chlorotris (triphenylphosphine) rhodium (I) has been incorporated into model biomembrane structures in the form of lipid bilayer dispersions in water. This enables the hydrogenation of the double bonds of the unsaturated lipids within the bilayers to be accomplished. To decide the optimum conditions for efficient hydrogenation the reaction conditions have been varied. The effect of catalyst concentration, hydrogen gas pressure and lipid composition (with and without cholesterol) have all been studied. The partition of the catalyst into the lipid medium was checked by rhodium analysis. The results show that an increase of catalyst concentration or an increase of hydrogen gas pressure leads to increasing rates of hydrogenation. Successful hydrogenation was accomplished with different types of lipid dispersions (mitochondrial, microsomal and erythrocyte lipids). A selectivity of the homogeneous hydrogenation process is indicated. The polyunsaturated fatty acyl residues are hydrogenated at an earlier stage and at a faster rate than the monoenoic acids. Furthermore, an increase in the proportion of cholesterol to lipid within the bilayer structures causes a progressive decrease in the rate of hydrogenation. The fluidity of the lipid bilayers can be altered to such an extent by the hydrogenation process that new sharp endotherms corresponding to the order-disorder transition of saturated lipids occur at temperatures as high as 319 K. Some potential uses of hydrogenation for the modulation of cell membrane fluidity are discussed as well as the design of new types of catalyst molecules.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号