Cometabolic degradation of polychlorinated biphenyls (PCBs) by axenic cultures of Ralstonia sp. strain SA-5 and Pseudomonas sp. strain SA-6 obtained from Nigerian contaminated soils |
| |
Authors: | Sunday Adekunle Adebusoye Matthew O. Ilori Flynn W. Picardal Olukayode O. Amund |
| |
Affiliation: | (1) Department of Botany and Microbiology, Faculty of Science, University of Lagos, Akoka, Yaba, Lagos, Nigeria;(2) Environmental Science Research Center, School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405, USA |
| |
Abstract: | Substantial metabolism of 2,3,4,5-tetrachlorobiphenyl (2,3,4,5-tetraCB) and 2,3′,4′,5-tetraCB by axenic cultures of Ralstonia sp. SA-5 and Pseudomonas sp. SA-6 was observed in the presence of biphenyl supplementation, although, the strains were unable to utilize tetrachlorobiphenyls as growth substrate. The former was more amenable to aerobic degradation (∼70% degradation) than the latter (22–45% degradation). Recovery of 2,5-chlorobenzoic acid and chloride from 2,3′,4′,5-tetraCB assay is an indication of initial dioxygenase attack on the 3,4-dichlorophenyl ring. The PCB-degradative ability of both strains was also investigated by GC analysis of individual congeners in Aroclor 1242 (100 ppm) following 12-day incubation with washed benzoate-grown cells. Results revealed two different catabolic properties. Whereas strain SA-6 required biphenyl as inducer of the degradation activity, such induction was not required by strain SA-5. Nearly all the detectable congeners in the mixture were extensively degraded (% reduction in ECD area counts for individual congeners ranged from 50.0 to 100% and 14.2 to 100%, respectively, for SA-5 and SA-6). The two strains exhibited no noticeable specificity for congeners with varying numbers of chlorine substitution and positions. The degradative competence of these isolates most especially SA-5 makes them among the most versatile PCB-metabolizing organisms yet reported. |
| |
Keywords: | Aroclor 1242 Bacteria Chlorobenzoic acid Cometabolism Degradation Polychlorinated biphenyl |
本文献已被 SpringerLink 等数据库收录! |
|