首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Advancing the use of minirhizotrons in wetlands
Authors:C M Iversen  M T Murphy  M F Allen  J Childs  D M Eissenstat  E A Lilleskov  T M Sarjala  V L Sloan  P F Sullivan
Institution:1. Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
2. Department of Geography, McGill University, Montreal, QC, Canada
3. Center for Conservation Biology, University of California, Riverside, CA, USA
4. Department of Horticulture, Pennsylvania State University, University Park, PA, USA
5. Northern Research Station, USDA Forest Service, Houghton, MI, USA
6. Finnish Forest Research Institute, Parkano, Finland
7. Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
8. Environment and Natural Resources Institute, University of Alaska Anchorage, Anchorage, AK, USA
9. Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, USA
Abstract:

Background

Wetlands store a substantial amount of carbon (C) in deep soil organic matter deposits, and play an important role in global fluxes of carbon dioxide and methane. Fine roots (i.e., ephemeral roots that are active in water and nutrient uptake) are recognized as important components of biogeochemical cycles in nutrient-limited wetland ecosystems. However, quantification of fine-root dynamics in wetlands has generally been limited to destructive approaches, possibly because of methodological difficulties associated with the unique environmental, soil, and plant community characteristics of these systems. Non-destructive minirhizotron technology has rarely been used in wetland ecosystems.

Scope

Our goal was to develop a consensus on, and a methodological framework for, the appropriate installation and use of minirhizotron technology in wetland ecosystems. Here, we discuss a number of potential solutions for the challenges associated with the deployment of minirhizotron technology in wetlands, including minirhizotron installation and anchorage, capture and analysis of minirhizotron images, and upscaling of minirhizotron data for analysis of biogeochemical pools and parameterization of land surface models.

Conclusions

The appropriate use of minirhizotron technology to examine relatively understudied fine-root dynamics in wetlands will advance our knowledge of ecosystem C and nutrient cycling in these globally important ecosystems.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号