首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of tumor suppressor PTEN gene on apoptosis and cell cycle of human airway smooth muscle cells
Authors:Luo  Liang  Gong  Yuan Qi  Qi  XieFei  Lai  WenYan  Lan  Haibing  Luo  Yaling
Institution:1. The Centre of Drug Safeguard, Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
2. Department of Pharmacology, Second Military Medical University, Shanghai, People’s Republic of China
3. Medical Department, Chinese People’s Liberation Army General Hospital, 28 Fuxing Road, Beijing, 100853, People’s Republic of China
Abstract:Tumor necrosis factor-alpha (TNFα) plays a crucial role in inflammatory diseases such as rheumatoid arthritis and postmenopausal osteoporosis. Recently, it has been demonstrated that hydrogen gas, known as a novel antioxidant, can exert therapeutic anti-inflammatory effect in many diseases. In this study, we investigated the effect of treatment with hydrogen molecule (H2) on TNFα-induced cell injury in osteoblast. The osteoblasts isolated from neonatal rat calvariae were cultured. It was found that TNFα suppressed cell viability, induced cell apoptosis, suppressed Runx2 mRNA expression, and inhibited alkaline phosphatase activity, which was reversed by co-incubation with H2. Incubation with TNFα-enhanced intracellular reactive oxygen species (ROS) formation and malondialdehyde production increased NADPH oxidase activity, impaired mitochondrial function marked by increased mitochondrial ROS formation and decreased mitochondrial membrane potential and ATP synthesis, and suppressed activities of antioxidant enzymes including SOD and catalase, which were restored by co-incubation with H2. Treatment with H2 inhibited TNFα-induced activation of NFκB pathway. In addition, treatment with H2 inhibited TNFα-induced nitric oxide (NO) formation through inhibiting iNOS activity. Treatment with H2 inhibited TNFα-induced IL-6 and ICAM-1 mRNA expression. In conclusion, treatment with H2 alleviates TNFα-induced cell injury in osteoblast through abating oxidative stress, preserving mitochondrial function, suppressing inflammation, and enhancing NO bioavailability.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号