首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Chronic Inflammation Alters Production and Release of Glutathione and Related Thiols in Human U373 Astroglial Cells
Authors:Megan L Steele  Stacey Fuller  Annette E Maczurek  Cindy Kersaitis  Lezanne Ooi  Gerald Münch
Institution:1. Department of Pharmacology, School of Medicine, University of Western Sydney, Locked Bag 1797, Penrith South, Campbelltown, NSW, 1797, Australia
2. School of Biochemistry and Molecular Biology, James Cook University, Townsville, QLD, Australia
3. School of Science & Health, University of Western Sydney, Campbelltown, NSW, Australia
4. Molecular Medicine Research Group, University of Western Sydney, Campbelltown, NSW, Australia
Abstract:Neurons rely on glutathione (GSH) and its degradation product cysteinylglycine released by astrocytes to maintain their antioxidant defences. This is particularly important under conditions of inflammation and oxidative stress, as observed in many neurodegenerative diseases including Alzheimer’s disease (AD). The effects of inflammatory activation on intracellular GSH content and the extracellular thiol profile (including cysteinylglycine and homocysteine) of astrocytes were investigated. U373 astroglial cells exposed to IL-1β and TNF-α for up to 96 h showed a dose-dependent increase in IL-6 release, indicative of increasing pro-inflammatory cellular activation. With increasing concentrations of IL-1β and TNF-α (0.01–1 ng/ml), an increase in both intracellular and extracellular GSH levels was observed, followed by a return to control levels in response to higher concentrations of IL-1β and TNF-α. Extracellular levels of cysteinylglycine decreased in response to all concentrations of IL-1β and TNF-α. In contrast, levels of the neurotoxic thiol homocysteine increased in a dose-dependent manner to IL-1β and TNF-α-induced activation. Our results suggest that chronically activated astrocytes in the brain might fail to adequately maintain GSH substrate delivery to neurons, thus promoting neuronal vulnerability. They might also explain the elevated levels of homocysteine found in the brains and serum of patients with AD.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号