首页 | 本学科首页   官方微博 | 高级检索  
     


Arginine Catabolism by Leishmania donovani Promastigotes
Authors:J. JOSEPH BLUM
Affiliation:Division of Physiology, Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
Abstract:ABSTRACT Leishmania donovani promastigotes were grown to late log phase, washed and resuspended in iso-osmotic buffer containing L-arginine, and the rate of urea formation was then measured under various conditions. Addition of glucose or mannose activated urea formation, whereas 2-deoxyglucose inhibited and 6-deoxyglucose had no effect. Addition of alanine or of α -aminoisobutyrate inhibited urea formation, alanine causing a greater inhibition than α -aminoisobutyrate. Addition of leucine, proline, glycine, or lysine had no effect on urea formation. The presence of glutamate also increased the rate of urea formation from arginine, but to a lesser extent than did glucose. The presence of both glucose and alanine caused no net change in urea formation, whereas the inhibitory effect of alanine exceeded the activating effect of glutamate, so that a small inhibition in the rate of urea formation occurred in the presence of both alanine and glutamate. Cells grown to 3-day stationary phase had a markedly reduced rate of arginine catabolism to urea, but the activating effect of glucose and the inhibitory effect of alanine were qualitatively similar to their effects on late log phase cells. Addition of water to cells suspended in buffer also inhibited urea formation, but this appeared to be due primarily to the release of alanine caused by the hypo-osmotic stress. Addition of mannitol to cells suspended in buffer caused a small inhibition of arginine catabolism. Addition of dibutyrylcyclic AMP, 3',5'-cyclic GMP, phorbol myristic acid, or A23187 had no effect on the rate of urea formation from arginine. It is suggested that the effects of glucose and 2-deoxyglucose on arginine catabolism depend largely upon the nature of their metabolites, whereas the effects of the various amino acids examined depend largely on the extent to which they interfere with or enhance arginine transport into the cells.
Keywords:α-aminoisobutyrate    2-deoxyglycose    osmotic stress    urea.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号