Suppression of basic fibroblast growth factor expression by antisense oligodeoxynucleotides inhibits the growth of transformed human astrocytes. |
| |
Authors: | R S Morrison |
| |
Affiliation: | Robert S. Dow Neurological Sciences Institute, Good Samaritan Hospital, Portland, Oregon 97209. |
| |
Abstract: | Basic fibroblast growth factor (bFGF) is a heparin-binding protein expressing potent mitogenic and angiogenic properties. Elevated levels of bFGF have recently been described in human glioma cell lines. The high degree of vascularity and invasiveness which characterize human gliomas suggest that activated expression of bFGF or similar proteins may be related to the aberrant growth patterns of these tumors. The influence of endogenous bFGF on glioma cell growth in vitro was evaluated in the present study by down-regulating bFGF expression using antisense oligonucleotide primers. The addition of 50 microM bFGF-specific antisense primer to the human glioma cell line SNB-19 resulted in an 80% inhibition in glioma growth. This effect was saturable and specific. Antisense primers directed to two different sites of bFGF mRNA were effective in suppressing SNB-19 growth, whereas sense strand primer was ineffective. Furthermore, only the antisense primer significantly reduced the specific activity of bFGF protein in SNB-19 cell extracts. Neither antisense or sense primers inhibited the growth of non-transformed human glia. bFGF mRNA was detected in both transformed and non-transformed human glia by polymerase chain reaction analysis suggesting that alterations in bFGF isoform content or activity may be specifically related to abnormal growth control in human gliomas. |
| |
Keywords: | |
|
|