首页 | 本学科首页   官方微博 | 高级检索  
     


Electrostatic and hydrophobic interactions governing the interaction and binding of beta-lactoglobulin to membranes
Authors:Zhang Xiuqi  Ge Ning  Keiderling Timothy A
Affiliation:Department of Chemistry, University of Illinois, 845 West Taylor Street (m/c 111), Chicago, Illinois 60607-7061, USA.
Abstract:The role of electrostatic and hydrophobic interactions in the binding and penetration of beta-lactoglobulin (betaLG) to preformed lipid membranes was studied using various phospholipid micelles and vesicles. Zwitterionic lysophospholipid micelles are able to induce the beta-sheet to alpha-helix transition, as judged by circular dichroism (CD), but the degree of transition is dramatically below and the amount of lipid required above that for anionic phospholipids with equivalent hydrocarbon chains. Anionic phospholipids with short hydrocarbon chains induce only low alpha-helical content in betaLG as compared to phospholipids with the same head group but longer hydrocarbon chains. These results suggest that both electrostatic and hydrophobic interactions are indispensable in betaLG-lipid interaction. Furthermore, air-water interface monolayer surface pressure and fluorescence anisotropy studies reveal that the membrane insertion of betaLG strongly depends on the nature of phospholipids, given the identical headgroup, particularly lipid packing. These results are supported by urea denaturation and acrylamide fluorescence quenching tests and by the FTIR-ATR polarization results for betaLG in multilayers on a surface. Under the same experimental conditions, the membrane binding and insertion of betaLG as well as the stability of the betaLG-lipid complexes can be enhanced by lowering the pH. Collectively, electrostatic interactions play a crucial role in all the processes involved in the betaLG-lipid interaction, while the presence of hydrophobic interaction remains necessary. Finally, betaLG biological function in the transport of fatty acids was tested by demonstrating the release of 2-AS from a 2-AS-betaLG complex on binding to lipids.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号