首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Activation of the 20S Proteasome of Xenopus Oocytes by SDS: Evidence for the Substrate-Induced Conformational Change Characteristic of Trypsin-Like Peptidase
Authors:Yamada S  Sato K  Yamada J  Yasutomi M  Tokumoto T  Ishikawa K
Abstract:The 20S proteasome of eukaryotic cells has at least three distinct peptidase activities (trypsin-like, chymotrypsin-like and peptidylglutamylpeptide (PGP) hydrolase activities). These peptidases are latent and require appropriate activators. SDS has been widely used as an activator of these peptidases, but the mechanism of its activation remains unresolved. In this study, we investigated the kinetics of the SDS-activated hydrolysis of the above three types of peptidase of the 20S proteasome purified from Xenopus oocytes. When the reaction was started by simultaneous adding both SDS and substrate, maximal rates of hydrolysis were reached after appreciable lag phases with the trypsin-type substrate t-butyloxycarbonylLeu-Arg-Arg-4-methylcoumaryl-7-amide (Boc-LRR-MCA)], but no such lag phases were observed with the chymotrypsin-type and PGP hydrolase-type substrates succinyl-Leu-Leu-Val-Tyr-4-methylcoumaryl-7-amide (Suc-LLVY-MCA), and benzyloxycarbonyl-Leu-Leu-Glu-2-naphthylamide (Cbz-LLE-2NA), respectively]. Similarly, changes in the hydrolysis rate to a reduced level upon dilution of SDS occurred after an appreciable lag phase again in the trypsin-like peptidase, but not in the other types. The lag phase characteristic of the trypsin-like peptidase was dependent on the substrate concentration. Thus, the lag phase was less discernible at very low concentrations of the substrate (e.g. at concentrations in the order of 1/100 of the Km value), but became more conspicuous with the increases in the substrate concentration. This lag phase also vanished upon preincubation of the activator (SDS) for a short period of 5 sec. These results suggest that the formation of the enzyme-substrate complex in the trypsin-like reaction induces a conformational change in the enzyme which makes the SDS activator site(s) in an occluded form, reducing the rates of SDS binding and dissociation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号