Mitochondrial Oscillations and Waves in Cardiac Myocytes: Insights from Computational Models |
| |
Authors: | Ling Yang Paavo Korge Zhilin Qu |
| |
Affiliation: | † Department of Medicine (Cardiology), David Geffen School of Medicine at University of California, Los Angeles, California ‡ Department of Physiology, David Geffen School of Medicine at University of California, Los Angeles, California § Center for Systems Biology, Suzhou University, Jiangsu, China |
| |
Abstract: | Periodic cellwide depolarizations of mitochondrial membrane potential (ΨM) which are triggered by reactive oxygen species (ROS) and propagated by ROS-induced ROS release (RIRR) have been postulated to contribute to cardiac arrhythmogenesis and injury during ischemia/reperfusion. Two different modes of RIRR have been described: ΨM oscillations involving ROS-sensitive mitochondrial inner membrane anion channels (IMAC), and slow depolarization waves related to mitochondrial permeability transition pore (MPTP) opening. In this study, we developed a computational model of mitochondria exhibiting both IMAC-mediated RIRR and MPTP-mediated RIRR, diffusively coupled in a spatially extended network, to study the spatiotemporal dynamics of RIRR on ΨM. Our major findings are: 1), as the rate of ROS production increases, mitochondria can exhibit either oscillatory dynamics facilitated by IMAC opening, or bistable dynamics facilitated by MPTP opening; 2), in a diffusively-coupled mitochondrial network, the oscillatory dynamics of IMAC-mediated RIRR results in rapidly propagating (∼25 μm/s) cellwide ΨM oscillations, whereas the bistable dynamics of MPTP-mediated RIRR results in slow (0.1-2 μm/s) ΨM depolarization waves; and 3), the slow velocity of the MPTP-mediated depolarization wave is related to competition between ROS scavenging systems and ROS diffusion. Our observations provide mechanistic insights into the spatiotemporal dynamics underlying RIRR-induced ΨM oscillations and waves observed experimentally in cardiac myocytes. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|