首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dynamic Strategies for Target-Site Search by DNA-Binding Proteins
Authors:Mario A Díaz de la Rosa  Peter J Mulligan
Institution: Department of Chemical Engineering, Stanford University, Stanford, California
Biophysics Program, Stanford University, Stanford, California
Abstract:Gene regulatory proteins find their target sites on DNA remarkably quickly; the experimental binding rate for lac repressor is orders-of-magnitude higher than predicted by free diffusion alone. It has been proposed that nonspecific binding aids the search by allowing proteins to slide and hop along DNA. We develop a reaction-diffusion theory of protein translocation that accounts for transport both on and off the strand and incorporates the physical conformation of DNA. For linear DNA modeled as a wormlike chain, the distribution of hops available to a protein exhibits long, power-law tails that make the long-time displacement along the strand superdiffusive. Our analysis predicts effective superdiffusion coefficients for given nonspecific binding and unbinding rate parameters. Translocation rate exhibits a maximum at intermediate values of the binding rate constant, while search efficiency is optimized at larger binding rate constant values. Thus, our theory predicts a region of values of the nonspecific binding and unbinding rate parameters that balance the protein translocation rate and the efficiency of the search. Published data for several proteins falls within this predicted region of parameter values.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号