首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecular dynamics simulations of pentapeptides at interfaces: salt bridge and cation-pi interactions
Authors:Aliste Marcela P  MacCallum Justin L  Tieleman D Peter
Institution:Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4.
Abstract:Peptide-membrane interactions are important for understanding the binding, partitioning, and folding of membrane proteins; the activity of antimicrobial and fusion peptides; and a number of other processes. We describe molecular dynamics simulations (10-25 ns) of two pentapeptides Ace-WLXLL (with X = Arg or Lys side chain) (White, S. H., and Wimley, W.C. (1996) Nat. Struct. Biol. 3, 842-848) in water and three different membrane mimetic systems: (i) a water/cyclohexane interface, (ii) water-saturated octanol, and (iii) a solvated dioleoylphosphatidylcholine bilayer. A salt bridge is found between the protonated Arg or Lys side chains with the carboxyl terminus at the three interfaces. In water/cyclohexane, the salt bridge is most exposed to the water phase and least stable. In water/octanol and the lipid bilayer systems, the salt bridge once formed persists throughout the simulations. In the lipid bilayer, the salt bridge is more stable when the peptide penetrates deeper into the bilayer. In one of two peptides, a cation-pi interaction between the Arg and the Trp side chains is stable in the lipid bilayer for about 15 ns before breaking. In all cases, the conformations of the peptides are restricted by their presence at the interface and can be assigned to a few major conformational clusters. Side chains facing the water phase are most mobile. In the lipid bilayer, the peptides remain in the interface area, where they overlap with the carbonyl area of the lipid bilayer and perturb the local density profile of the bilayer. The tryptophan side chain remains in the water-lipid interface, where it interacts with the lipid choline group and forms hydrogen bonds with the ester carbonyl of the lipid and with water in the interface.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号