首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Quantitative analysis of mitochondrial flocculent densities in rat hepatocytes during normothermic and hypothermic ischemia in vitro
Authors:G L Myagkaya  H van Veen  J James
Institution:1. Laboratory of Histology and Cell Biology, University of Amsterdam, Academic Medical Center, Meibergdreef 15, 1105, AZ Amsterdam, The Netherlands
Abstract:The development of flocculent densities in mitochondria as a sign of irreversible cell injury in rat hepatocytes has been studied by quantitative electron microscopy during in vitro ischemia under both normothermic (37 degrees C) and hypothermic (4 degrees C) conditions. At 37 degrees C flocculent densities first appear after 1 h ischemia; at this stage they are small in diameter (170 nm) and occur in only 8% of mitochondria. After 1.5 hour ischemia, flocculent densities increase in diameter (207 nm) and are seen in 37% of mitochondria. Death of the majority of hepatocytes seems to occur between 1.5 and 2 h ischemia since at this stage the percentage of mitochondria containing flocculent densities reaches a maximum (48%). However, flocculent densities continue to increase in size (to 337 nm diam.) up to between 2 and 4 h ischemia (the prenecrotic phase). In contrast, at 4 degrees C signs of ischemic damage to hepatocytes are considerably delayed. Flocculent densities of comparable size and frequency to those observed after 1 h ischemia at 37 degrees C are not seen till as late as 4 days at 4 degrees C. At the latter temperature, only after 7 days ischemia a substantial rise (to about 25%) in the proportion of mitochondria containing flocculent densities occurs. A further slow increase in size and in the percentage of mitochondria containing densities occurs up to 14 days ischemia at 4 degrees C. It is concluded that the development of flocculent densities may be used only as a parameter of irreversible damage in cells with a sufficient number of mitochondria, such as hepatocytes, under normothermic conditions. With ischemia at 4 degrees C, possibly due to a different protein denaturation pattern, the development of flocculent densities is of much less value as an indication of irreversible cell damage and cannot, therefore, be considered as a reliable sign of cellular damage in organs stored at 4 degrees C for transplantation purposes.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号