首页 | 本学科首页   官方微博 | 高级检索  
     


Diacylglycerols stimulate short-circuit current across frog skin by increasing apical Na+ permeability
Authors:Mortimer M. Civan  Kim Peterson-Yantorno  Thomas G. O'Brien
Affiliation:(1) Departments of Physiology and Medicine, University of Pennsylvania School of Medicine, 19104 Philadelphia, Pennsylvania;(2) Wistar Institute, 19104 Philadelphia, Pennsylvania
Abstract:Summary The phorbol ester TPA (12-O-tetradecanoylphorbol-13-acetate) stimulates baseline Na+ transport across frog skin epithelium and partially inhibits the natriferic response to vasopressin. The effects are produced largely or solely when TPA is added to the mucosal surface of the tissue. Although TPA activates protein kinase C, it has other effects, as well. Thus, the biochemical basis for the effects and the ionic events involved have been unclear. Furthermore, the physiologic implications have been obscure because of the sidedness of TPA's actions.We now report that two synthetic diacylglycerols (DAG) replicate the stimulatory and inhibitory effects of TPA on frog skin. DAG is the physiologic activator of PKC. In this tissue, it produces half-maximal stimulation at a concentration of lE19 mgrM. In contrast to TPA, DAG is about equally effective from either tissue surface.In a series of eight experiments, DAG was found to depolarize the apical membrane. Diacylglycerol also increases the paracellular conductance of frog skins bathed with mucosal Cl Ringer's solution. The latter effect can be minimized by replacing NO3 for Cl in the mucosal solution. Under these conditions, combined intracellular and transepithelial measurements indicated that DAG increased both the apical Na+ permeability and intracellular Na+ concentration. These results are qualitatively similar to the effects of cyclic 3prime, 5prime-AMP on this tissue, suggesting that activation of PKC by DAG causes phosphorylation of the same or nearby gating sites phosphorylated by cAMP.We propose that apical Na+ entry is regulated in part by activation of PKC, and that insulin may be a physiologic trigger of this activation.
Keywords:phorbol esters  TPA  protein kinase C  insulin Na+ transport  intracellular potential  intracellular Na+ concentration  current-voltage relationship
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号