首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A novel in-vitro system for the simultaneous exposure of bladder smooth muscle cells to mechanical strain and sustained hydrostatic pressure
Authors:Haberstroh Karen M  Kaefer Martin  DePaola Natacha  Frommer Sarah A  Bizios Rena
Institution:Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
Abstract:The novel hydrostrain system was designed in an effort to establish and maintain conditions that simulate the in-vivo mechanical environment of the bladder. In this laboratory system, ovine bladder smooth muscle cells on flexible, 10-cm-dia silastic membranes were exposed simultaneously to hydrostatic pressure (40 cm H2O, a pressure level currently associated with bladder pathologies) and mechanical strains (up to 25 percent) under standard cell culture conditions for 7 h. Under these conditions, Heparin Binding-Epidermal Growth Factor and Collagen Type III mRNA expression were significantly increased (p<0.01 and 0.1, respectively); however, no changes were observed in Collagen Type I mRNA expression. Decreases in the Collagen Type I:Type III ratio following simultaneous exposure of bladder smooth muscle cells to pathological levels of hydrostatic pressure and mechanical strain in vitro are in agreement with clinically observed increases in Collagen Type III with concomitant decreased human bladder compliance. The results of the present study, therefore, provide cellular/molecular level information relevant to bladder pathology that could have significant implications in the field of clinical urology.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号