首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Numerical analysis of dynamic temperature in response to different levels of reactive hyperaemia in a three-dimensional image-based hand model
Authors:Hongwei Shao  Lizhong Mu
Institution:Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
Abstract:Vascular reactivity (VR) is considered as an effective index to predict the risk of cardiovascular events. A cost-effective alternative technique used to evaluate VR called digital thermal monitoring (DTM) is based on the response of finger temperature to vessel occlusion and reperfusion. In this work, a simulation has been developed to investigate hand temperature in response to vessel occlusion and perfusion. The simulation consists of image-based mesh generation and finite element analysis of blood flow and heat transfer in tissues. In order to reconstruct a real geometric model of human hand, a computer programme including automatic image processing for sequential MR data and mesh generation based on the transfinite interpolation method is developed. In the finite element analysis part, blood flow perfused in solid tissues is considered as fluid phase through porous media. Heat transfer in tissues is described by Pennes bioheat equation and blood perfusion rate is obtained from Darcy velocities. Capillary pressure, blood perfusion and temperature distribution of hand are obtained. The results reveal that fingertip temperature is strongly dependent on larger arterial pressure. This simulation is of potential to quantify the indices used for evaluating the VR in DTM test if it is integrated with the haemodynamic model of blood circulation in upper limb.
Keywords:heat transfer  porous media  MR images  human hand  finite element method  blood flow
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号