首页 | 本学科首页   官方微博 | 高级检索  
   检索      


An innovative numerical approach to resolve the pulse wave velocity in a healthy thoracic aorta model
Authors:An-Shik Yang  Li-Yu Tseng  Chih-Chieh Chiang  Wen-Yih Isaac Tseng  Hsi-Yu Yu
Institution:1. Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, 1, Section 3, Chung-Hsiao E. Road, Taipei 106, Taiwan R.O.C;2. Institute of Mechatronic Engineering, National Taipei University of Technology, 1, Section 3, Chung-Hsiao E. Road, Taipei 106, Taiwan R.O.C;3. Department of Aeronautics and Astronautics, National Cheng-Kung University, 1, University Road, Tainan City 701, Taiwan R.O.C;4. Center for Optoelectronic Biomedicine, National Taiwan University Hospital and National Taiwan University College of Medicine, 1, Jen-Ai Road, Section 1, Taipei 10051, Taiwan R.O.C;5. Department of Cardiovascular Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, 7 Chung-Shan S. Road, Taipei 10051, Taiwan R.O.C
Abstract:Aortic dissection and atherosclerosis are highly fatal diseases. The development of both diseases is closely associated with highly complex haemodynamics. Thus, in predicting the onset of cardiac disease, it is desirable to obtain a detailed understanding of the flowfield characteristics in the human cardiovascular circulatory system. Accordingly, in this study, a numerical model of a normal human thoracic aorta is constructed using the geometry information obtained from a phase-contrast magnetic resonance imaging (PC-MRI) technique. The interaction between the blood flow and the vessel wall dynamics is then investigated using a coupled fluid–structure interaction (FSI) analysis. The simulations focus specifically on the flowfield characteristics and pulse wave velocity (PWV) of the blood flow. Instead of using a conventional PC-MRI method to measure PWV, we present an innovative application of using the FSI approach to numerically resolve PWV for the assessment of wall compliance in a thoracic aorta model. The estimated PWV for a normal thoracic aorta agrees well with the results obtained via PC-MRI measurement. In addition, simulations which consider the FSI effect yield a lower predicted value of the wall shear stress at certain locations in the cardiac cycle than models which assume a rigid vessel wall. Consequently, the model provides a suitable basis for the future development of more sophisticated methods capable of performing the computer-aided analysis of aortic blood flows.
Keywords:haemodynamics  fluid–structure interaction  pulse wave velocity  thoracic aorta
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号