首页 | 本学科首页   官方微博 | 高级检索  
     


Finite element analysis of the biomechanical interaction between coronary sinus and proximal anchoring stent in coronary sinus annuloplasty
Authors:Thuy Pham  Milton Deherrera
Affiliation:1. Tissue Mechanics Lab, Biomedical Engineering and Mechanical Engineering, University of Connecticut, Storrs, CT, USA;2. Advanced Materials/Technology Group, Edwards Lifesciences, Irvine, CA, USA
Abstract:Recent clinical studies of the percutaneous transvenous mitral annuloplasty (PTMA) devices have shown a short-term reduction of mitral regurgitation after implantation. However, adverse events associated with the devices such as compression and perforation of vessel branches, device migration and fracture were reported. In this study, a finite element analysis was carried out to investigate the biomechanical interaction between the proximal anchor stent of a PTMA device and the coronary sinus (CS) vessel in three steps including: (i) the stent release and contact with the CS wall, (ii) the axial pull t the stent connector and (iii) the pressure inflation of the vessel wall. To investigate the impact of the material properties of tissues and stents on the interactive responses, the CS vessel was modelled with human and porcine material properties, and the proximal stent was modelled with two different Nitinol materials with one being stiffer than the other. The results indicated that the vessel wall stresses and contact forces imposed by the stents were much higher in the human model than the porcine model. However, the mechanical differences induced by the two stent types were relatively small. The softer stent exhibited a better fatigue safety factor when deployed in the human model than in the porcine model. These results underscored the importance of the CS tissue mechanical properties. Vessel wall stress and stent radial force obtained in the human model were higher than those obtained in the porcine model, which also brought up questions as to the validity of using the porcine model to assess device mechanical function. The quantification of these biomechanical interactions can offer scientific insight into the development and optimisation of the PTMA device design.
Keywords:minimally invasive  mitral valve repair  coronary vein  PTMA stent  Monarc  tissue–stent interaction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号