首页 | 本学科首页   官方微博 | 高级检索  
     


1 alpha,25-dihydroxyvitamin D3 modulation in lipid metabolism in established bone marrow-derived stromal cells, MC3T3-G2/PA6.
Authors:M Shionome  T Shinki  N Takahashi  K Hasegawa  T Suda
Affiliation:Department of Periodontics, School of Dentistry, Showa University, Tokyo, Japan.
Abstract:MC3T3-G2/PA6 (PA6) cells established from newborn mouse calvaria are preadipocytic stromal cells, which differentiate into adipocytes in response to glucocorticoids. We examined the effects of 1 alpha,25-dihydroxyvitamin D3[1 alpha,25(OH)2D3] on adipogenesis in PA6 cells. When PA6 cells were cultured with 10(-8) M dexamethasone, adipocytes containing oil red O-positive droplets first appeared on day 7 (3 days after confluence was attained) and the maximal synthesis of neutral lipids occurred on day 12. Simultaneous addition of 1 alpha,25(OH)2D3 at 10(-9)M completely blocked this dexamethasone-induced neutral lipid synthesis throughout the 14-day culture period. Dose-response studies of vitamin D3 derivatives showed that 1 alpha,25(OH)2D3 was the most potent in inhibiting neutral lipid synthesis in PA6 cells, followed by 1 alpha-hydroxyvitamin D3, 25-hydroxyvitamin D3, and 24R,25-dihydroxyvitamin D3, in that order. Dexamethasone greatly enhanced incorporation of [14C]-acetic acid into triacylglycerol in PA6 cells. The incorporation was markedly inhibited by the addition of 10(-9) M 1 alpha,25(OH)2D3. Instead, 1 alpha,25(OH)2D3 greatly increased incorporation of [14C]-acetic acid into phospholipids, such as phosphatidylcholine and phosphatidylethanolamine, irrespective of the presence or absence of dexamethasone. These results suggest that 1 alpha,25(OH)2D3 modulation of lipid metabolism in bone marrow stromal cells is receptor mediated.
Keywords:adipocyte  adipogenesis  osteoporosis  phospholipids  preadipocyte  triacylglycerol  vitamin D derivatives
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号