首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Enhanced rate of citrate export from cholesterol-rich hepatoma mitochondria. The truncated Krebs cycle and other metabolic ramifications of mitochondrial membrane cholesterol
Authors:R A Parlo  P S Coleman
Abstract:Mitochondria isolated from rapidly growing, poorly differentiated Morris hepatoma 3924A have been found to export the citrate they generate from pyruvate, at a rate greater than four times that of control liver preparations. These 3924A mitochondria fail to exhibit state 3 respiration when either pyruvate or citrate are supplied as respiratory fuels. Nevertheless, substrates that join the Krebs cycle beyond citrate (viz. isocitrate, glutamate, alpha-ketoglutarate, and succinate) are readily oxidized by tumor 3924A mitochondria. Blocking the tricarboxylate anion exchange carrier with the citrate transport inhibitor 1,2,3-benzenetricarboxylate restores the ability of tumor 3924A mitochondria to respire with pyruvate or citrate. Slowly growing, minimally deviated Morris hepatoma 16 possesses mitochondria that do not display discernably altered respiratory patterns with pyruvate or citrate, but they do exhibit a 30% increase in the rate of citrate export relative to control liver preparations. Paralleling the preferential citrate export from tumor mitochondria is a dramatic enrichment of the tumor mitochondrial membranes with cholesterol. Hepatoma 3924A mitochondria possess a more than 5-fold enrichment in cholesterol, and those from tumor 16 display a 2-fold enrichment. When normal mitochondria, isolated from ACI strain rat liver, were enriched with cholesterol in vitro via a solid-state molecule transfer method employing Sephadex G-10 beads coated with cholesterol, they exhibited altered patterns of Krebs cycle metabolism that were qualitatively identical to those obtained with isolated Morris hepatoma mitochondria (which become enriched in membrane cholesterol endogenously during tumorigenesis). The enrichment of mitochondrial membranes with cholesterol, either by experimental manipulation in vitro or during the proliferation of the tumor in the host animal, promotes these metabolic changes directly, apparently by effecting a functional alteration in the operation of the tricarboxylate (citrate) exchange carrier of the inner mitochondrial membrane. These results highlight two related but incompletely understood phenomena as follows: 1) a functionally truncated Krebs cycle in cholesterol-rich tumor mitochondria, and 2) a mechanism for providing higher cytoplasmic levels of precursor metabolite intermediates which help sustain deregulated cholesterogenesis in hepatomas and other malignant neoplasms.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号