首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structure-guided alteration of coenzyme specificity of formate dehydrogenase by saturation mutagenesis to enable efficient utilization of NADP+
Authors:Andreadeli Aggeliki  Platis Dimitris  Tishkov Vladimir  Popov Vladimir  Labrou Nikolaos E
Institution:Laboratory of Enzyme Technology, Department of Agricultural Biotechnology, Agricultural University of Athens, Greece.
Abstract:Formate dehydrogenase from Candida boidinii (CboFDH) catalyses the oxidation of formate anion to carbon dioxide with concomitant reduction of NAD(+) to NADH. CboFDH is highly specific to NAD(+) and virtually fails to catalyze the reaction with NADP(+). Based on structural information for CboFDH, the loop region between beta-sheet 7 and alpha-helix 10 in the dinucleotide-binding fold was predicted as a principal determinant of coenzyme specificity. Sequence alignment with other formate dehydrogenases revealed two residues (Asp195 and Tyr196) that could account for the observed coenzyme specificity. Positions 195 and 196 were subjected to two rounds of site-saturation mutagenesis and screening and enabled the identification of a double mutant Asp195Gln/Tyr196His, which showed a more than 2 x 10(7)-fold improvement in overall catalytic efficiency with NADP(+) and a more than 900-fold decrease in the efficiency with NAD(+) as cofactors. The results demonstrate that the combined polar interactions and steric factors comprise the main structural determinants responsible for coenzyme specificity. The double mutant Asp195Gln/Tyr196His was tested for practical applicability in a cofactor recycling system composed of cytochrome P450 monooxygenase from Bacillus subtilis, (CYP102A2), NADP(+), formic acid and omega-(p-nitrophenyl)dodecanoic acid (12-pNCA). Using a 1250-fold excess of 12-pNCA over NADP(+) the first order rate constant was determined to be equal to k(obs) = 0.059 +/- 0.004 min(-1).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号