首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Tissue culture and plant regeneration of the salt marsh monocots <Emphasis Type="Italic">Juncus roemerianus</Emphasis> and <Emphasis Type="Italic">Juncus gerardi</Emphasis>
Authors:Jiangbo?Wang  Email author" target="_blank">Denise?M?SeliskarEmail author  John?L?Gallagher
Institution:(1) Halophyte Biotechnology Center, College of Marine Studies, University of Delaware, 700 Pilottown Road, 19958 Lewes, DE
Abstract:Summary Tissue culture and plant regeneration protocols for the salt marsh plants Juncus roemerianus Scheele and Juncus gerardi Loisel, were developed. J. roemerianus callus was induced from mature seeds cultured on Murashige and Skoog (MS) medium supplemented with 2.22 μM 6-benzylaminopurine (BA), 5.37 μM α-naphthaleneacetic acid (NAA), 2.26 μM 2,4-dichlorophenoxyacetic acid (2,4-D), and 50 ml l−1 coconut water (callus induction medium). The callus was subcultured on MS medium containing 2.22 μM BA, 5.37 μM NAA, and 9.05 μM 2,4-D for callus maintenance. Shoot regeneration occurred 2 wk after transferring the callus onto shoot regeneration medium, which consisted of MS medium containing BA or thidiazuron. A high frequency of shoot regeneration was obtained when the medium contained 13.3 μM BA. Regenerated shoots were transferred to MS medium supplemented with 10.7 μM NAA for root production. Rooting did not occur in the shoots regenerated on the thidiazuron-containing media. The callus induction medium for J. roemerianus was also effective in inducing callus of J. gerardi from young inflorescences. The same medium was also used for callus maintenance. Shoot regeneration occurred 10 d after transferring the callus onto MS medium supplemented with 0.44 μM BA and 0.57 μM indole-3-acetic acid. Root regeneration occurred after transferring the shoots onto MS medium plus 0.44 μM BA and 14.8 μM indole-3-butyric acid. The regenerated plants of both J. roemerianus and J. gerardi grew vigorously in potting soil in the greenhouse. J. roemerianus regenerants also grew well in a saltwater-irrigated field plot. Tissue culture-produced plants of J. roemerianus and J. gerardi can be used for planting in created or restored wetlands.
Keywords:black needle rush  blackgrass  organogenesis  restoration  salt marsh
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号