首页 | 本学科首页   官方微博 | 高级检索  
     


Cooperative symmetric to asymmetric conformational transition of the apo-form of scavenger decapping enzyme revealed by simulations
Authors:Pentikäinen Ulla  Pentikäinen Olli T  Mulholland Adrian J
Affiliation:Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom. ulla.pentikainen@bytl.jyu.fi
Abstract:Decapping is a central step in eukaryotic mRNA turnover and in gene expression regulation. The human scavenger decapping enzyme, DcpS, catalyses cap hydrolysis following mRNA degradation. DcpS is a dimeric enzyme, with two active sites. Crystal structures suggest that DcpS must undergo significant conformational changes upon ligand binding, but the mechanism of this transition is unknown. Here, we report two long timescale (20 ns) molecular dynamics simulations of the apo-form of DcpS. The dimer is observed to undergo a strikingly cooperative motion, with one active site closing while the other opens. The amplitude of the conformational change is 6-21 A and the apparent timescale is 4-13 ns. These findings indicate that the crystallographically observed symmetric conformation of apo-form of DcpS is only a minor conformation in solution. The simulations also show that active sites are structurally connected via the domain-swapped dimer structure of the N-terminal domain, even in the absence of a bound ligand. These findings suggest a functional reason for the enzyme existing as a dimer, and may be widely relevant, also for other dimeric proteins.
Keywords:molecular dynamics simulation  cooperative conformational change  dimeric enzyme  swapped‐domain structure  hinge‐bending motion
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号