首页 | 本学科首页   官方微博 | 高级检索  
     


Phage-Derived Fully Human Monoclonal Antibody Fragments to Human Vascular Endothelial Growth Factor-C Block Its Interaction with VEGF Receptor-2 and 3
Authors:Matthias Rinderknecht  Alessandra Villa  Kurt Ballmer-Hofer  Dario Neri  Michael Detmar
Affiliation:1. Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland.; 2. Philochem AG, ETH Zurich, Zurich, Switzerland.; 3. Biomolecular Research, Paul Scherrer Institut, Villigen, Switzerland.;University of Southampton, United Kingdom
Abstract:Vascular endothelial growth factor C (VEGF-C) is a key mediator of lymphangiogenesis, acting via its receptors VEGF-R2 and VEGF-R3. High expression of VEGF-C in tumors correlates with increased lymphatic vessel density, lymphatic vessel invasion, sentinel lymph node metastasis and poor prognosis. Recently, we found that in a chemically induced skin carcinoma model, increased VEGF-C drainage from the tumor enhanced lymphangiogenesis in the sentinel lymph node and facilitated metastatic spread of cancer cells via the lymphatics. Hence, interference with the VEGF-C/VEGF-R3 axis holds promise to block metastatic spread, as recently shown by use of a neutralizing anti-VEGF-R3 antibody and a soluble VEGF-R3 (VEGF-C/D trap). By antibody phage-display, we have developed a human monoclonal antibody fragment (single-chain Fragment variable, scFv) that binds with high specificity and affinity to the fully processed mature form of human VEGF-C. The scFv binds to an epitope on VEGF-C that is important for receptor binding, since binding of the scFv to VEGF-C dose-dependently inhibits the binding of VEGF-C to VEGF-R2 and VEGF-R3 as shown by BIAcore and ELISA analyses. Interestingly, the variable heavy domain (VH) of the anti-VEGF-C scFv, which contains a mutation typical for camelid heavy chain-only antibodies, is sufficient for binding VEGF-C. This reduced the size of the potentially VEGF-C-blocking antibody fragment to only 14.6 kDa. Anti-VEGF-C VH-based immunoproteins hold promise to block the lymphangiogenic activity of VEGF-C, which would present a significant advance in inhibiting lymphatic-based metastatic spread of certain cancer types.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号