首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Functional characterization and cloning of amino acid transporter B(0,+) (ATB(0,+)) in primary cultured rat pneumocytes
Authors:Uchiyama Tomomi  Fujita Takuya  Gukasyan Hovhannes J  Kim Kwang-Jin  Borok Zea  Crandall Edward D  Lee Vincent H L
Institution:First Department of Biochemistry, Kyushu University of Health and Welfare, Nobeoka, Miyazaki, Japan.
Abstract:Cationic amino acid transport in primary cultured rat pneumocytes exhibiting characteristics of alveolar epithelial type I-like cells are described. Asymmetry and activator ion dependency of (3)H-L-arginine uptake were characterized from the apical or basolateral fluid of pneumocytes grown on permeable support. Substrate specificity of transport was evaluated as a function of (3)H-L-arginine uptake inhibition in the presence of other amino acids. Transepithelial transport studies estimated (3)H-L-arginine flux in the apical-to-basolateral and basolateral-to-apical directions. Full length cDNA of rat amino acid transporter B(0,+) (rATB(0,+)) was cloned and its relative expression level studied. Results indicate that uptake of (3)H-L-arginine from apical fluid is dependent on Na(+) and Cl(-). Zwitterionic and cationic amino acids (excluding L-proline and anionic amino acids) inhibited uptake of (3)H-L-arginine from apical, but not basolateral incubation fluid. Apical-to-basolateral transepithelial flux of (3)H-L-arginine was 20x higher than basolateral-to-apical transport. Kinetic studies of (3)H-L-arginine uptake from apical fluid revealed maximal velocity (V(max)) and Michaelis-Menten constants (K(t)) of 33.32 +/- 2.12 pmol/mg protein/15 min and 0.50 +/- 0.11 mM, respectively, in a cooperative process having a coupling ratio of 1.18 +/- 0.16 with Na(+) and 1.11 +/- 0.13 with Cl(-). Expression of rATB(0,+) mRNA was identified by RT-PCR and Northern analysis. Corresponding cloned 3.2 kb rATB(0,+) cDNA sequence exhibits pronounced homology in deduced amino acid sequence to mouse (95% identity and 97% similarity) and human (89% identity and 95% similarity) ATB(0,+) homologues. We conclude that rat pneumocytes express ATB(0,+), which may partly contribute towards recovering cationic and neutral amino acids from alveolar luminal fluid.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号