首页 | 本学科首页   官方微博 | 高级检索  
     


The determination of the absolute configurations of chiral molecules using vibrational circular dichroism (VCD) spectroscopy
Authors:Stephens Philip J  Devlin Frank J  Pan Jian-Jung
Affiliation:Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0482, USA. pstephen@usc.edu
Abstract:The vibrational circular dichroism (VCD) spectra of the two enantiomers of a chiral molecule are of equal magnitude and opposite sign: i.e. mirror-image enantiomers give mirror-image VCD spectra. In principle, the absolute configuration (AC) of a chiral molecule can therefore be determined from its VCD spectrum. In practice, the determination of the AC of a chiral molecule from its experimental VCD spectrum requires a methodology which reliably predicts the VCD spectra of its enantiomers. The only reliable methodology developed to date uses the Stephens quantum-mechanical theory of the rotational strengths of fundamental vibrational transitions, developed in the early 1980s, implemented using ab initio density functional theory in the GAUSSIAN program in the mid 1990s. This methodology has by now been widely used in determining ACs from experimental VCD spectra. In this article we discuss the protocol for determining the ACs of chiral molecules with optimum reliability and its implementation for a variety of molecules, including the D3 symmetry perhydrotriphenylene, a thiazino-oxadiazolone recently shown to be a highly active calcium entry channel blocker, the alkaloid natural products schizozygine, iso-schizogaline, and iso-schizogamine, and the iridoid natural products plumericin, iso-plumericin, and prismatomerin. The power of VCD spectroscopy in determining ACs, even for large organic molecules and for substantially conformationally-flexible organic molecules is clearly documented.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号