Carapace movements associated with ventilation and irrigation of the branchial chambers in the semaphore crab,Heloecius cordiformis (Decapoda: Brachyura: Ocypodidae) |
| |
Authors: | David P. Maitland |
| |
Affiliation: | (1) School of Biological Science, University of New South Wales, P.O. Box 1, 2033 Kensington, N.S.W., Australia;(2) Present address: Department of Physiology, Medical School, University of the Witwatersrand, Parktown, 2193 Johannesburg, South Africa |
| |
Abstract: | Summary Carapace movements in crabs are briefly reviewed. While on land and recirculating branchial water, the Australian semaphore crab Heloecius cordiformis (Decapoda: Ocypodidae), a semi-terrestrial air-breathing mangrove crab, sequentially depresses and elevates its carapace relative to its thorax (0.5–1 mm excursion) in a regular pump-like manner. In quiescent crabs each carapace-pumping cycle lasts about 4 s; carapace depression takes 3 s and elevation 1 s. Carapace movements are brought about by pressures generated within the branchial chambers by the scaphognathites, probably in combination with carapace muscles. Carapace movements are associated with bilaterally synchronised scaphognathite activity. Unilateral scaphognathite activity was not observed. During normal forward recirculation of branchial water the scaphognathites beat at about 1.5 Hz (slow-forward pumping) and the lungs (epibranchial chambers) are not ventilated. In Heloecius, the lungs are not physically separated from the gills below by an anatomical barrier. Lung ventilation is accomplished during the following sequence of events: the carapace is lowered and the scaphognathites pump in a fast-forward mode at about 2.8 Hz. This activity preferentially pumps air out of the lungs and generates suction within the branchial chambers (4–10 cm H2O below ambient) which draws water from external body surfaces into the hypobranchial space below and around the gills. At the end of the carapace's downward travel the scaphognathites switch from fast-forward to fastreverse beating at about 4 Hz. This pumps air into the lungs and the carapace elevates. As a result, during carapace elevation the water which had previously been drawn into the branchial chambers by fast-forward pumping activity is released and flows out between the legs and into the abdominosternal cavity. When the carapace reaches its original resting or up position the scaphognathites switch from fast-reverse to slowforward beating to re-establish water recirculation through the branchial chambers. This cycle is subsequently repeated. In stationary crabs, there are 2 carapace-pumping cycles per minute, increasing to 14 per minute in active crabs (walking). When water is absent, the lungs are preferentially ventilated by slow-reverse scaphognathite pumping activity. Carapace movements do not occur in the absence of branchial water. Carapace pumping is thought to provide a mechanism which permits the scaphognathites to ventilate the lungs in the presence of recirculating branchial water, without this water interfering with lung ventilation or being lost to the environment.Abbreviations FF, FR, SF, SR fast-forward, fast-reverse, slowforward, slow-reverse scaphognathite pumping - MEA Milne Edwards aperture |
| |
Keywords: | Carapace movements Lung ventilation Scaphognathite Water circulation Crab, Heloecius |
本文献已被 SpringerLink 等数据库收录! |
|