首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of the Activity of the Internal Globus Pallidus-Pedunculopontine Loop on the Transmission of the Subthalamic Nucleus-External Globus Pallidus-Pacemaker Oscillatory Activities to the Cortex
Authors:Arash Hadipour Niktarash  Gholam Ali Shahidi
Affiliation:Department of Neurology, Hazrat Rasool-e-Akram Hospital, Iran University of Medical Sciences (IUMS), P.O. Box 15875-5384, Tehran, Iran. hadipour_a@hotmail.com
Abstract:Resting tremor is the most specific sign for idiopathic Parkinson' disease. It has been proposed that parkinsonian tremor results from the activity of the central oscillators. One of the hypotheses, which have been proposed about the possible principles underlying such central oscillations, is the subthalamic nucleus (STN)-external globus pallidus (GPe)-pacemaker hypothesis. Activity from the central oscillator is proposed to be transmitted via trans-cortical pathways to the periphery. A computational model of the basal ganglia (BG) is proposed for simulating the effects of the internal globus pallidus (GPi)-pedunculopontine (PPN) loop activity on the transmission of the STN-GPe-pacemaker oscillatory activities to the cortex, based on known anatomy and physiology of the BG. According to the result of the simulation, the GPi-PPN loop activity can suppress the transmission of the STN-GPe-pacemaker oscillatory activities to the cortex. This suppressive effect is controlled by various factors such as the strength of the synaptic connection from the PPN to the GPi, the strength of the synaptic connection from the GPi to the PPN, the spontaneous tonic activities of the GPi and PPN, the direct excitatory projections from the STN to the PPN, the frequency of the STN oscillatory burst activity, the duration of the STN burst, and the maximum T-type calcium channel conductance in the type-I PPN neurons.
Keywords:parkinsonian tremor  basal ganglia  pedunculopontine nucleus  globus pallidus  subthalamic nucleus  thalamus  oscillations  computational models
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号