首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Iron–sulfur protein maturation in Helicobacter pylori: identifying a Nfu‐type cluster carrier protein and its iron–sulfur protein targets
Authors:Stéphane L Benoit  Ashley A Holland  Michael K Johnson  Robert J Maier
Institution:1. Department of Microbiology and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA;2. Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA
Abstract:Helicobacter pylori is anomalous among non nitrogen‐fixing bacteria in containing an incomplete NIF system for Fe–S cluster assembly comprising two essential proteins, NifS (cysteine desulfurase) and NifU (scaffold protein). Although nifU deletion strains cannot be obtained via the conventional gene replacement, a NifU‐depleted strain was constructed and shown to be more sensitive to oxidative stress compared to wild‐type (WT) strains. The hp1492 gene, encoding a putative Nfu‐type Fe–S cluster carrier protein, was disrupted in three different H. pylori strains, indicating that it is not essential. However, Δnfu strains have growth deficiency, are more sensitive to oxidative stress and are unable to colonize mouse stomachs. Moreover, Δnfu strains have lower aconitase activity but higher hydrogenase activity than the WT. Recombinant Nfu was found to bind either one 2Fe–2S] or 4Fe–4S] cluster/dimer, based on analytical, UV–visible absorption/CD and resonance Raman studies. A bacterial two‐hybrid system was used to ascertain interactions between Nfu, NifS, NifU and each of 36 putative Fe–S‐containing target proteins. Nfu, NifS and NifU were found to interact with 15, 6 and 29 putative Fe–S proteins respectively. The results indicate that Nfu, NifS and NifU play a major role in the biosynthesis and/or delivery of Fe–S clusters in H. pylori.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号