首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Stretching single-stranded DNA: interplay of electrostatic, base-pairing, and base-pair stacking interactions.
Authors:Y Zhang  H Zhou  and Z C Ou-Yang
Institution:Institute of Theoretical Physics, The Chinese Academy of Sciences, Beijing 100080, China. yzhang@danforthcenter.org
Abstract:Recent single-macromolecule observations revealed that the force/extension characteristics of single-stranded DNA (ssDNA) are closely related to solution ionic concentration and DNA sequence composition. To understand this, we studied the elastic property of ssDNA through the Monte Carlo implementation of a modified freely jointed chain (FJC), with electrostatic, base-pairing, and base-pair stacking interactions all incorporated. The simulated force-extension profiles for both random and designed sequences have attained quantitative agreements with the experimental data. In low-salt solution, electrostatic interaction dominates, and at low forces, the molecule can be more easily aligned than an unmodified FJC. In high-salt solution, secondary hairpin structure appears in ssDNA by the formation of base pairs between complementary bases, and external stretching causes a hairpin-coil structural transition, which is continuous for ssDNA made of random sequences. In designed sequences such as poly(dA-dT) and poly(dG-dC), the stacking potential between base pairs encourages the aggregation of base pairs into bulk hairpins and makes the hairpin-coil transition a discontinuous (first-order) process. The sensitivity of elongation to the base-pairing rule is also investigated. The comparison of modeling calculations and the experimental data suggests that the base pairing of single-stranded polynucleotide molecules tends to form a nested and independent planar hairpin structure rather than a random intersecting pattern.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号