首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Nitric oxide suppresses apoptosis via interrupting caspase activation and mitochondrial dysfunction in cultured hepatocytes.
Authors:J Li  C A Bombeck  S Yang  Y M Kim  T R Billiar
Institution:Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
Abstract:Nitric oxide (NO) is a potent inhibitor of apoptosis in many cell types, including hepatocytes. We and others have described NO-dependent decreases in caspase activity in cells undergoing apoptosis. However, previous work has not determined whether NO disrupts the proteolytic processing and thus the activation of pro-caspases. Here we report that NO suppresses proteolytic processing and activation of multiple pro-caspases in intact cells, including caspase-3 and caspase-8. We found that both exogenous NO as well as endogenously produced NO via adenoviral inducible NO synthase gene transfer protected hepatocytes from tumor necrosid factor (TNF) alpha plus actinomycin D (TNFalpha/ActD)-induced apoptosis. Affinity labeling with biotin-VAD-fmk of all active caspase species in TNFalpha-mediated apoptosis identified four newly labeled spots (activated caspases) present exclusively in TNFalpha/ActD-treated cells. Both NO and the caspase inhibitor, Ac-DEVD-CHO, prevented the appearance of the four newly labeled spots or active caspases. Immunoanalysis of affinity labeled caspases demonstrated that caspase-3 was the major effector caspase. Western blot analysis also identified the activation of caspase-8 in the TNFalpha/ActD-treated cells, and the activation was suppressed by NO. Furthermore, NO inhibited several other events associated with caspase activation in cells, including release of cytochrome c from mitochondria, decrease in mitochondrial transmembrane potential, and cleavage of poly(ADP-ribose) polymerase in TNFalpha/ActD-treated cells. These findings indicate the involvement of multiple caspases in TNFalpha-mediated apoptosis in hepatocytes and establish the capacity of NO to inhibit not only active caspases but also caspase activation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号