首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Fixation and distribution of 14C in Populus deltoides during dormancy induction
Authors:Richard E Dickson  Eric A Nelson
Institution:Forestry Sciences Lab., North Central Forest Experiment Station, USDA, Forest Service, Rhinelander, WI 54501, USA.;Central Forest Res. Center, Westvaco Corp., P. O. Box 458, Wickliffe, KY 42087, USA.
Abstract:Photosynthetically fixed 14C was analyzed in various chemical fractions from leaves and stems of cottonwood (Populus deltoides Bartr. ex. Marsh.) during dormancy induction. Dormancy was induced by 8-h photoperiods and 20/14°C temperature regimes. Within 4 weeks under short days, terminal buds were set and leaf expansion and stem elongation had stopped. 14C2 was fed to a leaf at Leaf Plastochron Index 7 for 30 min. Either after this 30 min feeding period or after a 48-h translocation period the plants were sampled, freeze-dried, extracted and analyzed for14C. 14C-fixation decreased during dormancy induction from 60% to 17% of the 3.7 MBq 14C applied at 0 week and 8 weeks, respectively. Percentage distribution of 14C in chemical fractions of source leaves reflected leaf age and translocation inhibition. In rapidly growing plants, considerable 14C was incorporated into leaf protein while most of the soluble14C-sugars were either metabolized or translocated out of the leaf. After terminal bud set, the percentage of 14C in the protein and residue fractions decreased rapidly and that in the sugar fraction increased. Percent distribution in stems closely reflected changing metabolic pathways of carbon flow as influenced by dormancy induction. For example, the 14C in structural carbohydrates decreased in 5 weeks under short days from 65 to less than 10% of the 14C recovered in the chemical fractions, thus indicating cambium inhibition. At the same time the percentage of 14C in starch and sugar increased indicating storage. Short term (after 30 min) incorporation of 14C into the protein and starch fractions of leaves changed relatively little throughout the 8-week induction period. In contrast the turnover rates of these fractions (14C present after 48 h) increased considerably after active growth of the whole plant stopped.
Keywords:Cottonwood  leaf development  leaf senescence  starch-protein turnover  storage products  sugar  translocation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号