首页 | 本学科首页   官方微博 | 高级检索  
     


The bacteriorhodopsin model membrane system as a prototype molecular computing element
Authors:F T Hong
Abstract:The quest for more sophisticated integrated circuits to overcome the limitation of currently available silicon integrated circuits has led to the proposal of using biological molecules as computational elements by computer scientists and engineers. While the theoretical aspect of this possibility has been pursued by computer scientists, the research and development of experimental prototypes have not been pursued with an equal intensity. In this survey, we make an attempt to examine model membrane systems that incorporate the protein pigment bacteriorhodopsin which is found in Halobacterium halobium. This system was chosen for several reasons. The pigment/membrane system is sufficiently simple and stable for rigorous quantitative study, yet at the same time sufficiently complex in molecular structure to permit alteration of this structure in an attempt to manipulate the photosignal. Several methods of forming the pigment/membrane assembly are described and the potential application to biochip design is discussed. Experimental data using these membranes and measured by a tunable voltage clamp method are presented along with a theoretical analysis based on the Gouy-Chapman diffuse double layer theory to illustrate the usefulness of this approach. It is shown that detailed layouts of the pigment/membrane assembly as well as external loading conditions can modify the time course of the photosignal in a predictable manner. Some problems that may arise in the actual implementation and manufacturing, as well as the use of existing technology in protein chemistry, immunology, and recombinant DNA technology are discussed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号