首页 | 本学科首页   官方微博 | 高级检索  
     


The development of the photosynthetic apparatus and energy transduction in malate-limited phototrophic cultures of Rhodobacter capsulatus
Authors:S. Grether-Beck  J. Oelze
Affiliation:(1) Institut für Biologie II (Mikrobiologie), Universität Freiburg, Schänzlestrasse 1, D-7800 Freiburg, Federal Republic of Germany
Abstract:The question was studied whether limited availability of the carbon source controls the development of the photosynthetic apparatus in Rhodobacter capsulatus. The organisms were grown phototrophically in a chemostat limited by malate as the sole source of reducing equivalents and carbon. The incident light-energy flux, representing the only energy source, was kept constant. Steady state levels of protein and dry weight of cells as well as molar growth yield coefficients (Y) decreased with increasing dilution rate (D, representing the growth rate, mgr) up to about D=0.14 h-1. At higher D-values biomass levels as well as Y stayed largely constant. The specific rate of malate consumption leading to biomass production increased linearly while the rate representative of processes other than conversion of carbon into biomass increased almost exponentially with mgr. Specific bacteriochlorophyll (Bchl) contents of cells as well as the specific rate of Bchl synthesis were rather low at low D-values. They increased as D was increased. Light energy fluxes required to half-maximally saturate proton extrusion by whole cells decreased when D was increased up to 0.1 h-1; at higher D-values, however, they reached constancy. Maximal rates of proton extrusion as well as of photophosphorylation calculated on a Bchl basis decreased when D was increased up to 0.14 h-1 and reached constancy at higher D-values. The results suggest that the availability of the growth limiting substrate controls the formation of the photosynthetic apparatus and, consequently, its functional properties including the efficiency of light-energy transduction. A relationship is assumed between malate conversion into biomass, i.e. Y-values, and the efficiency of light-energy transduction.Abbreviations ALA 5-aminoleyulinic acid - Bchl bacteriochlorophyll - D dilution rate [h-1] - R Rhodobacter - Y molar growth yield coefficient - mgr growth rate [h-1]
Keywords:Rhodobacter capsulatus  Carbon-limited chemostat  Growth yield  Substrate consumption  Energy transduction  Photophosphorylation  Light-induced proton extrusion
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号