首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Transport of inorganic phosphate in primary cultures of chondrocytes isolated from the tibial growth plate of normal adolescent chickens
Authors:Wu Licia N Y  Guo Yande  Genge Brian R  Ishikawa Yoshinori  Wuthier Roy E
Institution:Department of Chemistry and Biochemistry, University of South Carolina, 329 Graduate Science Research Center, Columbia, South Carolina 29208, USA.
Abstract:This report describes Pi transport activity in chondrocytes isolated from the growth plate (GP) of normal adolescent chickens grown in primary cell culture. Our recent work showed that Pi transport in matrix vesicles (MV) isolated from normal GP cartilage was not strictly Na+-dependent, whereas previously characterized Pi transport from rachitic GP cartilage MV was. This Na+-dependent Pi transporter (NaPiT), a member of the Type III Glvr-1 gene family, is expressed only transiently during early differentiation of GP cartilage, is enhanced by Pi-deficiency, and is most active at pH 6.8. Since GP mineralization requires abundant Pi and occurs under slightly alkaline conditions, it seemed unlikely that this type of Pi transporter was solely responsible for Pi uptake during normal GP development. Therefore we asked whether the lack of strict Na+-dependency in Pi transport seen in normal MV was also evident in normal GP chondrocytes. In fact, cellular Pi transport was found not to be strictly Na+-dependent, except for a brief period early in the culture. Choline could equally serve as a Na+ substitute. Activity of choline-supported Pi transport was optimum at pH 7.6-8.0. In addition, prior exposure of the cells to elevated extracellular Pi (2-3 mM) strongly enhanced subsequent Pi uptake, which appeared to depend on prior loading of the cells with mineral ions. Prevention of Pi loading by pretreatment with Pi transport inhibitors not only inhibited subsequent cellular Pi uptake, it also blocked mineral formation. Treatment with elevated extracellular Pi did not induce apoptosis in these GP chondrocytes.
Keywords:growth plate chondrocytes  inorganic phosphate transport  sodium ion dependency  pH dependency  mineralization  phosphonoformate  alendronate
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号