首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The catalytic role of aspartate in a short strong hydrogen bond of the Asp274-His32 catalytic dyad in phosphatidylinositol-specific phospholipase C can be substituted by a chloride ion
Authors:Zhao Li  Liao Hua  Tsai Ming-Daw
Institution:Department of Chemistry, The Ohio State University, Coumbus, 43210, USA.
Abstract:Phosphatidylinositol-specific phospholipase C from Bacillus thuringiensis catalyzes the cleavage of the phosphorus-oxygen bond in phosphatidylinositol. The focus of this work is to dissect the roles of the carboxylate side chain of Asp(274) in the Asp(274)-His(32) dyad, where a short strong hydrogen bond (SSHB) was shown to exist based on NMR criteria. A regular hydrogen bond (HB) was observed in D274N, and no low field proton resonance was detected for D274E and D274A. Comparison of the activity of wild type, D274N, and D274A suggested that the regular HB contributes significantly (approximately 4 kcal/mol) to catalysis, whereas the SSHB contributes only an additional 2 kcal/mol. The mutant D274E displays high activity similar to wild type, suggesting that the negative charge is sufficient for the catalytic role of Asp(274). To further support this interpretation and rule out possible contribution of regular HB or SSHB in D274E, we showed that the activity of D274G can be rescued by exogenous chloride ions to a level comparable with that of D274E. Comparison between different anions suggested that the ability of an anion to rescue the activity is due to the size and the charge of the anion not the property as a HB acceptor. In conclusion, a major fraction of the functional role of Asp(274) in the Asp(274)-His(32) dyad can be attributed to a negative charge (as in D274E and D274G-Cl(-)), and the SSHB in the wild type enzyme provides minimal contribution to catalysis. These results represent novel insight for an Asp-His catalytic dyad and for the mechanism of phosphatidylinositol-specific phospholipase C.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号