首页 | 本学科首页   官方微博 | 高级检索  
     


A jacalin‐like lectin domain‐containing protein of Sclerospora graminicola acts as an apoplastic virulence effector in plant–oomycete interactions
Authors:Michie Kobayashi  Hiroe Utsushi  Koki Fujisaki  Takumi Takeda  Tetsuro Yamashita  Ryohei Terauchi
Affiliation:1. Iwate Biotechnology Research Center, Kitakami Iwate, Japan ; 2. Iwate University, Morioka Iwate, Japan ; 3. Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Muko Kyoto, Japan ;4.Present address: Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba Ibaraki, Japan
Abstract:The plant extracellular space, including the apoplast and plasma membrane, is the initial site of plant–pathogen interactions. Pathogens deliver numerous secreted proteins, called effectors, into this region to suppress plant immunity and establish infection. Downy mildew caused by the oomycete pathogen Sclerospora graminicola (Sg) is an economically important disease of Poaceae crops including foxtail millet (Setaria italica). We previously reported the genome sequence of Sg and showed that the jacalin‐related lectin (JRL) gene family has significantly expanded in this lineage. However, the biological functions of JRL proteins remained unknown. Here, we show that JRL from Sg (SgJRL) functions as an apoplastic virulence effector. We identified eight SgJRLs by protein mass spectrometry analysis of extracellular fluid from Sg‐inoculated foxtail millet leaves. SgJRLs consist of a jacalin‐like lectin domain and an N‐terminal putative secretion signal; SgJRL expression is induced by Sg infection. Heterologous expression of three SgJRLs with N‐terminal secretion signal peptides in Nicotiana benthamiana enhanced the virulence of the pathogen Phytophthora palmivora inoculated onto the same leaves. Of the three SgJRLs, SG06536 fused with green fluorescent protein (GFP) localized to the apoplastic space in N. benthamiana leaves. INF1‐mediated induction of defence‐related genes was suppressed by co‐expression of SG06536‐GFP. These findings suggest that JRLs are novel apoplastic effectors that contribute to pathogenicity by suppressing plant defence responses.
Keywords:apoplastic effector, downy mildew, foxtail millet, jacalin‐  related lectin, Sclerospora graminicola
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号