首页 | 本学科首页   官方微博 | 高级检索  
     


Nitric oxide augments voltage-gated P/Q-type Ca(2+) channels constituting a putative positive feedback loop
Authors:Chen Jianguo  Daggett Heather  De Waard Michel  Heinemann S H  Hoshi Toshinori
Affiliation:Department of Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA.
Abstract:P/Q-type Ca(2+) channels, which are postulated to play major roles in synaptic transmission, are regulated in a variety of ways. Ca(2+) currents through P/Q-type Ca(2+) channels (Ca(v)2.1/beta(1a)/alpha(2)delta) heterologously expressed in mammalian cells were recorded using the whole-cell patch clamp method. The oxidant H(2)O(2) increased the current amplitude and the effect was reversed by the reducing agent dithiothreitol (DTT). The stimulatory effect of H(2)O(2) on the Ca(2+) current was mimicked by the NO donors, SNAP, and diethylamine NONOate, and reversed by the reducing agent DTT. The presence of a soluble guanylate cyclase inhibitor did not abolish the ability of SNAP to increase the Ca(2+) current. Adenovirus-mediated overexpression of nitric oxide synthase in combination with application of the Ca(2+) ionophore A23187 also increased the Ca(2+) current amplitude and the effect was again reversed by DTT. The NOS inhibitor L-NAME abolished the stimulatory effect of A23187, and A23187 did not change the Ca(2+) currents in the cells treated with control adenovirus particles. The time course of the decline of the Ca(2+) current, but not of the Ba(2+) current, in response to repeated depolarization was markedly slowed by adenovirus-mediated overexpression of nitric oxide synthase. The results demonstrate that nitric oxide enhances the channel activity by promoting oxidation and suggest that Ca(2+), nitric oxide synthase, and nitric oxide could constitute a positive feedback loop for regulation of voltage-gated P/Q-type Ca(2+) channels.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号