首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Electron microscopic examination of sporulation-deficient mutants of the fission yeast Schizosaccharomyces pombe
Authors:Aiko Hirata  Chikashi Shimoda
Institution:(1) Institute of Applied Microbiology, The University of Tokyo, Bunkyo-ku, 113 Tokyo, Japan;(2) Department of Biology, Faculty of Science, Osaka City University, Sumiyoshi-ku, 558 Osaka, Japan
Abstract:A homothallic haploid strain of the fission yeast Schizosaccharomyces pombe initiates sexual reproduction (mating, meiosis and sporulation) in nitrogen-free sporulation medium. Cellular fine structures of eleven sporulation-deficient mutants (spo2, spo3, spo4, spo5, spo6, spo13, spo14, spo15, spo18, spo19 and spo20) of S. pombe in sporulation medium were examined by serial section-electron microscopy. The striking features of these spo mutants were: 1) the disappearance of the spindle pole bodies (SPBs) after the second meiotic division, and 2) the accumulation of unorganized structures. Based on histochemical staining, these structures were presumably unorganized spore wall precursors. In some mutants (spo3, spo5, spo6, spo19 and spo20), diploid zygotes contained four spore-like bodies which had walls similar to complete spore walls but failed to enclose any nuclei. After completion of the second meiotic division the nuclei were abnormally distributed in zygotic diploid cells. In the spo5, spo13, spo14, spo15 and spo19 mutants, the nuclei remained attached to each other. In spo5 and spo19, the inner membrane of the nuclear envelope was separated, but its outer membrane was shared by two sister nuclei. These observations suggest that the spo+ gene products play important roles in spatial and temporal organization of cellular structures during ascospore development.Abbreviations SPB spindle pole body - PTA-Cr phosphotungstic acid and chromic acid - PATAg periodic acid, thiocarbohydrazide and silver proteinate
Keywords:Sporulation  Meiosis  Ultrastructure  Spindle pole body  Spo mutants  Schizosaccharomyces pombe  Fission yeast
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号