首页 | 本学科首页   官方微博 | 高级检索  
     


Tissue distribution and developmental patterns of NADH-dependent and ferredoxin-dependent glutamate synthase activities in maize (Zea mays) kernels
Authors:Michael J. Muhitch
Affiliation:Seed Biosynthesis Research Unit, USDA, ARS, Northern Regional Research Center, 1815 N. University St., Peoria, IL 61604, USA.
Abstract:Both NADH-dependent glutamate synthase (NADH-GOGAT, EC 1.4.1.14) and ferredoxin-dependent glutamate synthase (Fd-GOGAT, EC 1.4.7.1) activities were present in the endosperm, embryo, pedicel and pericarp of maize ( Zea mays L. var. W64A × A619) kernels. The endosperm contained the highest proportions of each activity on a per tissue basis. In the endosperm, NADH-GOGAT and Fd-GOGAT activities increased 12- and 2.5-fold, respectively, during early zein accumulation. NADH-GOGAT and Fd-GOGAT activities were expressed in the upper, middle and lower portions of the endosperm in a manner that paralleled but preceded zein accumulation. Maize endosperm NADH-GOGAT was purified 159-fold using ammonium sulfate fractionation, anion exchange chromatography and dye-ligand chromatography. Apparent Km values for glutamine, α-ketoglutarate and NADH were 850, 19 and 1 μM, respectively. The results are consistent with endosperm GOGAT functioning to redistribute nitrogen from glutamine, the predominant nitrogenous compound delivered to the endosperm, into other amino acids needed for storage protein synthesis.
Keywords:Glutamate synthase    GOGAT    maize    nitrogen assimilation    seed development    Zea mays
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号