首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Distinct distribution of CGRP-, enkephalin-, galanin-, neuromedin U-, neuropeptide Y-, somatostatin-, substance P-, VIP- and serotonin-containing neurons in the two submucosal ganglionic neural networks of the porcine small intestine
Authors:Jean-Pierre Timmermans  Dietrich W Scheuermann  Werner Stach  Dirk Adriaensen  Marie H A De Groodt-Lasseel
Institution:(1) Institute of Histology and Microscopic Anatomy, University of Antwerp, Antwerp, Belgium;(2) Institute of Anatomy, Wilhelm Pieck University, Rostock, German Democratic Republic;(3) Institute of Histology and Microscopic Anatomy, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
Abstract:Summary In addition to differences between the two submucosal ganglionic neural networks, i.e., the plexus submucosus externus (Schabadasch) and the plexus submucosus internus (Meissner), with respect to the occurrence and distribution of serotonin as neurotransmitter, immunocytochemistry also revealed a distinct distribution for various neuropeptides in these two plexuses. Immunoreactivity for galanin, vasoactive intestinal polypeptide, calcitonin gene-related peptide, substance P, neuromedin U, enkephalin, somatostatin and neuropeptide Y was found in varicose and non-varicose nerve fibres of both submucosal ganglionic plexuses, albeit with a distinct distributional pattern. The difference in neurotransmitter and/or neuromodulator content between both neural networks became even more obvious when attention was focussed on the immunoreactivity of the nerve cell bodies for these substances. Indeed, neuropeptide Y, enkephalin-and somatostatin-immunoreactive neuronal perikarya as well as serotonergic neuronal cell bodies appear solely in the plexus submucosus externus. Neuromedin U-immunoreactive perikarya, mostly coexisting with substance P, are observed in large numbers in the plexus submucosus internus, whilst they are rare in the plexus submucosus externus. Double-labelling immunostaining for substance P with CGRP and galanin revealed a different coexistence pattern for the two submucosal ganglionic plexuses. The differing chemical content of the neuronal populations supports the hypothesis that the existence of the two submucosal ganglionic plexuses, present in most large mammals including man, not only reflects a morphological difference but also points to differentiated functions.
Keywords:Neuropeptides  Immunocytochemistry  Submucosal plexuses  Enteric nervous system  Small intestine  Pig
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号