首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Reverse Na+/Ca2+-exchange mediated Ca2+-entry and noradrenaline release in Na+-loaded peripheral sympathetic nerves
Institution:1. Lamont -Doherty Earth Observatory, Columbia University, 61 Route 9W, United States;2. Institute of Oceanology—Bulgarian Academy of Sciences, Varna 9000, Bulgaria;3. Varna Regional Museum of History, 41 Maria Louisa Blvd, 9000 Varna, Bulgaria;4. Now at Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001 Israel
Abstract:3H]noradrenaline (3H]NA) released from sympathetic nerves in the isolated main pulmonary artery of the rabbit was measured in response to field stimulation (2 Hz, 1 ms, 60 V for 3 min) in the presence of uptake blockers (cocaine, 3 × 10−5 M and corticosterone, 5 × 10−5 M). The 3H]NA-release was fully blocked by the combined application of the selective and irreversible ‘N-type’ voltage-sensitive Ca2+-channel (VSCC)-blocker ω-conotoxin (ω-CgTx) GVIA (10−8 M) and the ‘non-selective’ VSCC-blocker aminoglycoside antibiotic neomycin (3 × 10−3 M). Na+-loading (Na+-pump inhibition by K+-free perfusion) was required to elicit further NA-release after blockade of VSCCs (ω-CgTx GVIA + neomycin). In K+-free solution, in the absence of functioning VSCCs (ω-CgTx GVIA + neomycin), the fast Na+-channel activator veratridine (10−5 M) further potentiated the nerve-evoked release of 3H]NA. This NA-release was significantly inhibited by KB-R7943, and fully blocked by Cao2+-removal. However, Li+-substitution was surprisingly ineffective. The non-selective K+-channel blocker 4-aminopyridine (4-AP, 10−4 M) also further potentiated the nerve-evoked release of NA in K+-free solution. This potentiated release was concentration-dependently inhibited by KB-R7943, significantly inhibited by Li+-substitution and abolished by Cao2+-removal.It is concluded that in Na+-loaded sympathetic nerves, in which the VSCCs are blocked, the reverse Na+/Ca2+-exchange-mediated Ca2+-entry is responsible for transmitter release on nerve-stimulation. Theoretically we suppose that the fast Na+-channel and the exchanger proteins are close to the vesicle docking sites.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号