首页 | 本学科首页   官方微博 | 高级检索  
     


NAADP as a second messenger: neither CD38 nor base-exchange reaction are necessary for in vivo generation of NAADP in myometrial cells
Authors:Soares Sandra  Thompson Michael  White Thomas  Isbell Amir  Yamasaki Michiko  Prakash Yodeta  Lund Frances E  Galione Antony  Chini Eduardo N
Affiliation:Department of Anesthesiology, Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN 55905, USA.
Abstract:Nicotinic acid adenine dinucleotide phosphate (NAADP) has recently been shown to act as a second messenger controlling intracellular Ca2+ responses in mammalian cells. Many questions remain regarding this signaling pathway, including the role of the ryanodine receptor (RyR) in NAADP-induced Ca2+ transients. Furthermore, the exact metabolic pathway responsible for the synthesis of NAADP in vivo has not been determined. Here, we demonstrate that the NAADP mediated Ca2+ release system is present in human myometrial cells. We also demonstrate that human myometrial cells use the NAADP second messenger system to generate intracellular Ca2+ transients in response to histamine. It has been proposed in the past that the NAADP system in mammalian cells is dependent on the presence of functional RyRs. Here, we observed that the histamine-induced Ca2+ transients are dependent on both the NAADP and inositol 1,4,5-trisphosphate signaling pathways but are independent of RyRs. The enzyme CD38 has been shown to catalyze the synthesis of NAADP in vitro by the base-exchange reaction. Furthermore, it has been proposed that this enzyme is responsible for the intracellular generation of NAADP in vivo. Using CD38 knockout mice, we observed that both the basal and histamine stimulated levels of NAADP are independent of CD38 and the base-exchange reaction. Our group is the first to demonstrate that NAADP is a second messenger for histamine-elicited Ca2+ transients in human myometrial cells. Furthermore, the NAADP mediated mechanism in mammalian cells can be independent of RyRs and CD38. Our data provides novel insights into the understanding of the mechanism of action and metabolism of this new second messenger system. cADP ribose; inositol 1,4,5-trisphosphate; endoplasmic reticulum; ryanodine channel; nicotinic acid adenine dinucleotide phosphate; CD38; base-exchange reaction
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《American journal of physiology. Cell physiology》浏览原始摘要信息
点击此处可从《American journal of physiology. Cell physiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号