首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cultural properties and mass-energy balances in methanol fermentation by Methylomonas methanolovorans
Authors:Amano Y  Takada N  Sawada H  Sakuma H  Terui G
Institution:Department of Fermentation Technology, Faculty of Engineering, Osaka University, Yamada-kami, Suita-shi, Osaka 565, Japan.
Abstract:The cultural properties of an obligate methanol utilizer, Methylomonas methanolovorans, were investigated in batch and continuous cultures, and the problems of mass-energy balances were examined. Among the culture data, an exponential increase of growth lag with increased methanol concentration, as well as the inhibition kinetics in the relation between attainable maximum specific growth rate (mu(m) <== 0.52) and methanol concentration are of interest. In the latter case, the inhibition constant (K(i)) and the index number were 40 g/L, and 3 (dimensionless), respectively. The maximum yield coefficient (Y) in both batch and chemostat cultures was around 0.52. An analysis of the behavior of respiratory activity (Q(o2)) in response to the dissolved oxygen concentration (DO) indicated that the oxygen-terminal entity should be regarded as a single one with a saturation constant for DO of 32 mug/L (1.1 x 10(-6)M). Chemostat data showed that the saturation constant for methanol is as low as 2.2 mg/L or 7 x 10(minus;5)M. A linear relationship was observed between the respiratory activity (mol O(2)g(-1)h(-1)) and the specific growth rate (mu i h(-1)), with the relationship Q(o2) = 0.0504mu + 0.00112. The theory of mass and energy balances used by Roels has been reformed to give useful relationships between RQ or the cell yield and mu. In the case of M. methanolovorans, the relations can be greatly simplified since the influence of metabolic by-product formation was negligible. Experimental RQ values (theoretical values for Y = 0.52 and 0.445) at varying mu-values were compared with theoretical ones; despite considerable fluctuations, the results were regarded to conform with theory. By use of mass balance equations and enthalpy data of known compounds, the heat evolution in methanol fermentation was estimated indirectly to be 612 kcal/100 g biomass formed. The Y(ATP) problems are also discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号