Genome-wide analysis of miRNAs and Tasi-RNAs in Zea mays in response to phosphate deficiency |
| |
Authors: | Saurabh Gupta Manju Kumari Himansu Kumar Pritish Kumar Varadwaj |
| |
Affiliation: | 1.Department of Bioinformatics,Indian Institute of Information Technology-Allahabad,Allahabad,India;2.Centre for Agricultural Bioinformatics,ICAR-Indian Agricultural Statistics Research Institute,New Delhi,India |
| |
Abstract: | Globally important cereal crop maize provides important nutritions and starch in dietary foods. Low phosphate (LPi) availability in the soil frequently limits the maize quality and yield across the world. Small non-coding RNAs (Snc-RNAs) play crucial roles in growth and adaptation of plants to the environment. Snc-RNAs like microRNAs (miRs) and trans-acting small interfering RNAs (Tasi-Rs) play important functions in posttranscriptional regulation of gene expression, which controls plant development, reproduction, and biotic/abiotic stress responses. In order to identify the miR and Tasi-R alterations in leaf and root of maize in response to sufficient phosphate and LPi at 3LS and 4LS, the snc-RNA population libraries for 0th, 1st, 2nd, 4th, and 8th day were constructed. These libraries were used for genome-wide alignment and RNA-fold analysis for possible prediction of potential miRs and Tasi-Rs. This study reported 174 known and conserved differentially expressed miRs of 27 miR families of maize plant. In addition, leaf and root specific potential novel miRs representing 155 new families were also discovered. Differentially expressed conserved as well as novel miR functions in root and leaf during early stage of Pi starvation were extensively discussed. Leaf and root specific miRs as well as common miRs with their target genes, participating in different biological, cellular, and metabolic processes were explored. Further, four miR390-directed Tasi-Rs which belong to TAS3 gene family along with other orthologs of Tasi-Rs were also identified. Finally, the study provides an insight into the composite regulatory mechanism of miRs in maize in response to Pi deficiency. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|