首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Nitrogen Effect on Water-Soluble Polysaccharide Accumulation in <Emphasis Type="Italic">Streblonema</Emphasis> sp. (Ectocarpales,Phaeophyceae)
Authors:Anna V Skriptsova
Institution:1.A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch,Russian Academy of Sciences,Vladivostok,Russia
Abstract:The water-soluble polysaccharides of brown algae attract the increasing attention of researchers as an important class of polymeric materials of biotechnological interest. The sole source for production of these polysaccharides has been large brown seaweeds such as members of Laminariales and Fucales. A new source of water-soluble polysaccharides is suggested here: it is a filamentous brown alga Streblonema sp., which can be cultivated under controlled conditions in photobioreactors that allow obtaining algal biomass with reproducible content and quality of polysaccharides. The accumulation of water-soluble polysaccharides can be stimulated by macronutrient limitation. In response to nitrogen deficiency, Streblonema sp. accumulated water-soluble polysaccharides (WSPs) rich in laminaran. WSP accumulation started after 3–4 days following nitrate depletion and reached a plateau at around day 7. Polysaccharide accumulation was related to cellular nitrogen content. The critical internal N level that triggered the onset of polysaccharide accumulation was 2.3% dry weight (DW); at a cellular N concentration less than 1.4% DW, the polysaccharide synthesis stopped. Upon nitrate re-supply, mobilization of WSP occurred after 3 days. These results suggest that a two-stage cultivation process could be used to obtain large algal biomass with high water-soluble polysaccharide production: a first cultivation stage using nitrate-supplemented medium to accumulate algal biomass followed by a second cultivation stage in a nitrate-free medium for 3 to 7 days to enhance polysaccharide content in the alga.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号