首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Redistribution of the tight junction protein ZO-1 during physiological shedding of mouse intestinal epithelial cells
Authors:Guan Yanfang  Watson Alastair J M  Marchiando Amanda M  Bradford Emily  Shen Le  Turner Jerrold R  Montrose Marshall H
Institution:Vascular Physiology Group, Dept. of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM 87131-0001, USA.
Abstract:A novel vasodilatory influence of endothelial cell (EC) large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels is present following in vivo exposure to chronic hypoxia (CH) and may exist in other pathological states. However, the mechanism of channel activation that results in altered vasoreactivity is unknown. We tested the hypothesis that CH removes an inhibitory effect of the scaffolding domain of caveolin-1 (Cav-1) on EC BK(Ca) channels to permit activation, thereby affecting vasoreactivity. Experiments were performed on gracilis resistance arteries and ECs from control and CH-exposed (380 mmHg barometric pressure for 48 h) rats. EC membrane potential was hyperpolarized in arteries from CH-exposed rats and arteries treated with the cholesterol-depleting agent methyl-β-cyclodextrin (MBCD) compared with controls. Hyperpolarization was reversed by the BK(Ca) channel antagonist iberiotoxin (IBTX) or by a scaffolding domain peptide of Cav-1 (AP-CAV). Patch-clamp experiments documented an IBTX-sensitive current in ECs from CH-exposed rats and in MBCD-treated cells that was not present in controls. This current was enhanced by the BK(Ca) channel activator NS-1619 and blocked by AP-CAV or cholesterol supplementation. EC BK(Ca) channels displayed similar unitary conductance but greater Ca(2+) sensitivity than BK(Ca) channels from vascular smooth muscle. Immunofluorescence imaging demonstrated greater association of BK(Ca) α-subunits with Cav-1 in control arteries than in arteries from CH-exposed rats, although fluorescence intensity for each protein did not differ between groups. Finally, AP-CAV restored myogenic and phenylephrine-induced constriction in arteries from CH-exposed rats without affecting controls. AP-CAV similarly restored diminished reactivity to phenylephrine in control arteries pretreated with MBCD. We conclude that CH unmasks EC BK(Ca) channel activity by removing an inhibitory action of the Cav-1 scaffolding domain that may depend on cellular cholesterol levels.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号