首页 | 本学科首页   官方微博 | 高级检索  
     


Metabolic pathways of hydrogen production in fermentative acidogenic microflora
Authors:Zhang Liguo  Li Jianzheng  Ban Qiaoying  He Junguo  Jha Ajay Kumar
Affiliation:State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
Abstract:Biohydrogen production from organic wastewater by anaerobically activated sludge fermentation has already been extensively investigated, and it is known that hydrogen can be produced by glucose fermentation through three metabolic pathways, including the oxidative decarboxylation of pyruvic acid to acetyl-CoA, oxidation of NADH to NAD+, and acetogenesis by hydrogen-producing acetogens. However, the exact or dominant pathways of hydrogen production in the anaerobically activated sludge fermentation process have not yet been identified. Thus, a continuous stirred-tank reactor (CSTR) was introduced and a specifically acclimated acidogenic fermentative microflora obtained under certain operation conditions. The hydrogen production activity and potential hydrogen-producing pathways in the acidogenic fermentative microflora were then investigated using batch cultures in Erlenmeyer flasks with a working volume of 500 ml. Based on an initial glucose concentration of 10 g/l, pH 6.0, and a biomass of 1.01 g/l of a mixed liquid volatile suspended solid (MLVSS), 247.7 ml of hydrogen was obtained after a 68 h cultivation period at 35 +/- 1 degrees C. Further tests indicated that 69% of the hydrogen was produced from the oxidative decarboxylation of pyruvic acid, whereas the remaining 31% was from the oxidation of NADH to NAD+. There were no hydrogen-producing acetogens or they were unable to work effectively in the anaerobically activated sludge with a hydraulic retention time (HRT) of less than 8 h.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号