首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The voyage of stem cell toward terminal differentiation: a brief overview
Authors:Bhattacharyya Shalmoli  Kumar Ajay  Lal Khanduja Kishan
Institution:Department of Biophysics, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India. shalmoli2007@yahoo.co.in
Abstract:Presently, worldwide attempts are being made to apply stem cells and stem cell-derived products to a wide range of clinical applications and for the development of cell-based therapies. In order to harness stem cells and manipulate them for therapeutic application, it is very important to understand the basic biology of stem cells and identify the factors that govern the dynamics of these cells in the body. Several signaling pathways have emerged as key regulators of stem cells. Some of these signaling pathways regulate the stem cell's proliferative capacity and therefore act as direct regulators of the stem cell, whereas others are involved in shaping and maintaining the stem cell niche and therefore act as indirect regulators of the stem cell. It is difficult to identify which signaling pathways critically affect the stem cell's behavior and which are important for maintaining the quiescent population. A stem cell receives different extrinsic signals compared with the bulk population and responds to them differently. In order to manipulate these adult cells for therapeutic approaches it is crucial to identify how signaling pathways regulate stem cells either directly by regulating proliferative status or indirectly by influencing the niche. The main challenge is to identify whether different factors provide diverse extrinsic signals to the stem cell and its daughter cell population, or whether there are intrinsic differences in stem cell and daughter cell populations that is reflected in their behavior. In this study, we will focus on the various aspects of stem cell biology and differentiation, as well as exploring the potential strategies to intervene the differentiation process in order to obtain the desired yield of cells applicable in regenerative medicine.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号