首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Electron spin resonance spectroscopy, exercise, and oxidative stress: an ascorbic acid intervention study.
Authors:T Ashton  I S Young  J R Peters  E Jones  S K Jackson  B Davies  C C Rowlands
Institution:School of Applied Sciences, University of Glamorgan, Pontypridd, Wales, CF37 1DL, United Kingdom. tashton@glam.ac.uk
Abstract:Oxygen free radicals are highly reactive species that are produced in increased quantities during strenuous exercise and can damage critical biological targets such as membrane phospholipids. The present study examined the effect of acute ascorbic acid supplementation on exercise-induced free radical production in healthy subjects. Results demonstrate increases in the intensity of the alpha-phenyl-tert-butylnitrone adduct (0.05 +/- 0.02 preexercise vs. 0.19 +/- 0.03 postexercise, P = 0.002, arbitrary units) together with increased lipid hydroperoxides (1.14 +/- 0.06 micromol/l preexercise vs. 1.62 +/- 0.19 micromol/l postexercise, P = 0.005) and malondialdehyde (0.70 +/- 0.04 micromol/l preexercise vs. 0.80 +/- 0.04 micromol/l postexercise, P = 0.0152) in the control phase. After supplementation with ascorbic acid, there was no significant increase in the electron spin resonance signal intensity (0.02 +/- 0. 01 preexercise vs. 0.04 +/- 0.02 postexercise, arbitrary units), lipid hydroperoxides (1.12 +/- 0.21 micromol/l preexercise vs. 1.12 +/- 0.08 micromol/l postexercise), or malondialdehyde (0.63 +/- 0.07 micromol/l preexercise vs. 0.68 +/- 0.05 micromol/l postexercise). The results indicate that acute ascorbic acid supplementation prevented exercise-induced oxidative stress in these subjects.
Keywords:
点击此处可从《Journal of applied physiology (Bethesda, Md. : 1985)》浏览原始摘要信息
点击此处可从《Journal of applied physiology (Bethesda, Md. : 1985)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号